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(1) Any cyclic group is abelian. We prove the converse. Assume that G is a finite
abelian group of order n. If n is 1 then G is trivial and the result holds. If G is a
p-group for some prime p, i.e. n = pr for some r ∈ N, then by hypothesis there is
an element g ∈ G such that o(g) = pr. The subgroup < a > of G generated by a
has order same as G, and so G =< a >, showing that G is cyclic.

Now let n = pr1
1 · · · p

rl
l be the prime power decomposition of G. We proceed via

induction on l. When l = 1, G is a p1-group and has been dealt with. Assume that
for i ≤ l − 1, G is cyclic whenever G is abelian of order pr1

1 · · · p
rl−1
l−1 , pi’s distinct

primes, ri’s positive integers. By given hypothesis, there is an element a ∈ G of
order prl

l . As every subgroup of an abelian group are normal, the quotient group
H = G/ < a > is also abelian and has order pr1

1 · · · p
rl−1
l−1 . So by hypothesis, H is

cyclic. As G is abelian, G = H× < a >. We know that direct product of two
finite cyclic groups of relatively prime order is again cyclic. So G is cyclic. By
mathematical induction, the statement holds.

To see the statement about product of cyclic groups, consider two groups <
a > and < b > of order m and n respectively, (m, n) = 1. Consider the group
homomorphism Z →< a > × < b >, given by t 7→ (at, bt). The homorphism is
surjective by Chinese remainder theorem. Its kernel is l.c.m.(m, n)Z = mnZ. So
< a > × < b >� Z/mnZ, a cyclic group of order mn.

(2)

Theorem 0.1. (Lagrange’s Theorem) Let G be any finite group. For any subgroup
H of G, order of H divides the order of G.

Proof. Let H has m many right cosets in G. Any two distinct cosets are disjoint
and their union is G it self. Also each coset has size |H|. Thus |G| = m · |H|, and
hence |H divides |G|. �

(3) Let us first look at part (b).
Question: Let G be a cyclic group of order n. Determine all elements of order

m in it.
If m - n, there is no element of order m in G (Lagrange’s Theorem). So assume

that m|n. Since G is cyclic, there is a unique subgroup of order m in it, which can
be seen as follows. For any surjection f : Z → G, f ( n

mZ) is a subgroup of G,
and by Isomorphism theorem, Z/ n

mZ � G/ f ( n
mZ). So f ( n

mZ) is of index n/m in
G, and hence has order m. For any subgroup H of G of order m, f −1(H) = rZ for
some positive integer r, and hence H = f (rZ). Again by isomorphism theorem
G/H � Z/rZ. So r = n/m, and H = f ( n

m ).
Now if a be any element in G of order m, < a > is the unique subgroup of G

of order m, and a is a generator for this group. This precisely describes all such
elements, and there are φ(m) many of them.

For part (a), there is a unique subgroup of order 8 in Z/8888888Z, and any
element of order 8 is a generator of this subgroup. There are φ(8) = 23−2(2−1) = 4
such elements.
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(4) Any automorphism of a cyclic group maps generator to a generator. Let G =<
g >= {e, g, g2, · · · , gn−1} be a cyclic group of order n. Then gi is a generator if
and only if (i, n) = 1. Now let f ∈ Aut(G). Then f (g) = gi for some i. As f
is an isomorphism, < gi >= G, and so (i, n) = 1. Thus gi is a generator of G.
Conversely, for any homomorphism f : G → G with g 7→ gi, it is an isomorphism
if (i, n) = 1, i.e. gi is a generator for G. Thus the image of g fully describes the
automorphism group, namely Aut(G) � {0 ≤ i ≤ n − 1|(i, n) = 1} = Z/φ(n)Z, a
cyclic group of order φ(n).

(5) (a) The inclusion H ⊆ Φ−1Φ(H) follows from the definition of set theoretic in-
verse. To see the other inclusion, consider an element g ∈ Φ−1Φ(H). So Φ(g) =

Φ(h) for some h ∈ H. As Φ is a group homomorphism, Φ(g−1h) = e′, where e′

is the identity element in G′. Thus g−1h ∈ ker(Φ) = K. So g−1 = h−1k for some
k ∈ K. As K ⊆ H, g−1 ∈ H implying g ∈ H.

(b) Φ : G → G′ is a surjective group homomorphism with kernel K. Define the
following map

f : {H ≤ G|K ⊆ H} → {H′ ≤ G′}

f (H) B Φ(H). Clearly, this is a well defined map of sets. Let f (H1) = f (H2).
Choose h1 ∈ H1 arbitrarily. Then Φ(h1h−1

2 ) = e′ for some h2 ∈ H2, and hence
h1 ∈ h2K ⊆ H2. This shows that H1 ⊂ H2. Similarly replacing h1 by an element in
H2, we see that H1 = H2. This the map f is injective. As Φ is a surjection, for any
subgroup H′ of G′, Φ−1(H′) is a subgroup of G containing K. Now by set theory,
f (Φ−1(H′)) = H′, showing that f is also onto.

Let H be a normal subgroup of G containing K, and g′ ∈ G′. As Φ is a surjec-
tion, there is g ∈ G with Φ(g) = g′. So g′−1Φ(H)g′ = Φ(g−1Hg) = Φ(H), showing
that f (H) is a normal subgroup of G′. Conversely, let H′ be normal in G′, g ∈ G
arbitrary. Let Φ(g) = g′. Then Φ(g−1Φ−1H′g) = g′−1H′g′ = H′. As Φ−1(H′)
contains K, we have g−1Φ−1(H′)g = Φ−1(H′).

(6) Let us first look at the geometric picture. Z×Z is an abelian group and so < (1, 1) >
(in fact any subgroup) is normal. < 1, 1 > is the diagonal i.e. contains all the
integral points (i.e. both coordinates integer) on the line x = y. Any element in the
group Z2/ < (1, 1) > is a coset (a, b) < 1, 1 >= {(i · a, i · b)|i ∈ Z}, a, b ∈ Z. These
points lie on the line y = b

a x passing through the origin. Also if (c, d) is any integral
point on this line, ad = bc and so (c, d) = (a, b) · (c/a, d/b) = (a, b) · (c/a, c/a), and
hence is an element of the coset with representitive (a, b). Thus we may view the
group Z2/ < (1, 1) > as the integral points on the lines passing through the origin
with rational slope.

Define a map f : Z2/ < (1, 1) >→ Q as (a, b) < (1, 1) >7→ b/a. Then by the
observation above, this map is well defined. f ((a, b) < (1, 1) > ·(c, d) < (1, 1) >
) = f ((ac, bd) < (1, 1) >) = bd/ac = b/a · d/c = f ((a, b) < (1, 1) >) · f ((c, d) <
(1, 1) >). So f is indeed a group homomorphism. To show that f is onto, consider
an element a/b ∈ Q. Then f ((a, b) < (1, 1) >) = b/a. If (a, b) < (1, 1) > and
(c, d) < (1, 1) > are mapped to the same element under f , then b/a = d/c and so
they are on the same line passing through origin, and by the previous discussion,
lies in the same coset. This shows that f is injective. Thus Z × Z/ < (1, 1) >� Q.

(7) Let g =

(
a b
0 1

)
∈ G. The left coset of H in G with g as representative is given

by {
(
ax b
0 1

)
|0 , x ∈ R}. Under the identification of g with the point (a, b) in
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R2 \ {x = 0}, this coset corresponds to the line y = b except the point (0, b).
So the left coset partition consists of all such lines. The right coset of H with

representative g is given by {
(
ax bx
0 1

)
|0 , x ∈ R}. This corresponds to the line

passing through (a, b) and (0, 0) except the origin. So the right coset partition
consists of all such lines.

From the partitions as above it is clear that H is not normal in G. To be precise,

consider g as above, and let h =

(
x 0
0 1

)
∈ H. Then ghg−1 =

(
x b − bx
0 1

)
< H for

x , 1.


